首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45622篇
  免费   4070篇
  国内免费   1915篇
电工技术   1433篇
技术理论   1篇
综合类   2168篇
化学工业   13365篇
金属工艺   5524篇
机械仪表   902篇
建筑科学   1143篇
矿业工程   2395篇
能源动力   3997篇
轻工业   2951篇
水利工程   277篇
石油天然气   991篇
武器工业   91篇
无线电   2593篇
一般工业技术   7177篇
冶金工业   5551篇
原子能技术   448篇
自动化技术   600篇
  2024年   76篇
  2023年   848篇
  2022年   1229篇
  2021年   1774篇
  2020年   1641篇
  2019年   1555篇
  2018年   1472篇
  2017年   1560篇
  2016年   1623篇
  2015年   1544篇
  2014年   2428篇
  2013年   2690篇
  2012年   3070篇
  2011年   3708篇
  2010年   2782篇
  2009年   2577篇
  2008年   2184篇
  2007年   2729篇
  2006年   2456篇
  2005年   1960篇
  2004年   1750篇
  2003年   1546篇
  2002年   1393篇
  2001年   1138篇
  2000年   1008篇
  1999年   768篇
  1998年   688篇
  1997年   544篇
  1996年   513篇
  1995年   439篇
  1994年   380篇
  1993年   265篇
  1992年   277篇
  1991年   195篇
  1990年   191篇
  1989年   153篇
  1988年   107篇
  1987年   56篇
  1986年   35篇
  1985年   52篇
  1984年   41篇
  1983年   21篇
  1982年   44篇
  1981年   25篇
  1980年   18篇
  1979年   10篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 67 毫秒
51.
Oxide-based near infrared (IR)-shielding coatings consisting of quarter‐wave stacks of oxygen-deficient tantalum oxide (Ta2O5?x) and silicon oxide (SiO2) multilayers and tin-doped indium oxide (In2O3) (ITO) films with the thicknesses of 200–600 nm can block the passage of IR-A (wavelength: 760–1400 nm) and IR-B (wavelength: 1400–3000 nm) radiation, respectively. In this study, the optical properties and microstructure of these oxide-based IR-shielding coatings were investigated. Transmission electron microscopy images indicated that amorphous Ta2O5?x/amorphous SiO2 multilayers were uniform and dense. ITO films were found to be highly crystalline and show carrier concentrations of up to 7.1 × 1020 cm?3, resulting in the strong IR-B optical absorption due to the plasma excitation of the free carriers. Oxide-based IR-shielding coatings with an ITO thickness of 420 nm were found to have near-IR shielding rates of >90% and an average visible light transmittance of >70%. The effects of IR on human keratinocytes were studied to evaluate the IR-induced photoaging in human skin. It was found that the downregulation of cellular proliferation and the enhancement of senescence-associated β-galactosidase activity induced by IR irradiation were significantly inhibited by oxide-based IR-shielding coatings. Thus, this study provides a facile method for the development of coatings for smart windows with high IR-shielding ability and high visible light transmittance.  相似文献   
52.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
53.
54.
《Ceramics International》2022,48(12):16877-16884
Oxygen selective membrane on the base of cermet δ-Bi2O3/Ag with an interpenetrating structure has the maximum potential efficiency of air separation. However, the degradation processes, including the phase degradation of fluorite δ-Bi2O3, do not make it possible to create a membrane with the required perfection and durability. In this work, the ordering of oxygen vacancies with the transformation of fluorite into the rhombohedral phase (S.G. R-3) was studied by powder HT XRD in situ at 600 °C on dense Bi0.78Er0.2Hf0.02O1.51 ceramics. Fast regeneration of disordered fluorite occurs at T = 640–700 °C. The phase degradation of fluorite due to the segregation of dopants at the second stage leads into stable phases - sillenite, tetragonal or rhombohedral phase (S.G. R-3m), depending on the composition of δ-Bi2O3. Fast regeneration of fluorite occurs when heated to 820 °C, which is unacceptable for membranes. Analysis of all available data allows us to propose approaches to optimize the composition of δ-Bi2O3 and technical solutions for creating durable oxygen selective membranes with promising use in distributed multigeneration. As a result of the analysis, a new solid electrolyte with better parameters was obtained.  相似文献   
55.
以红心火龙果发酵液作为研究对象,通过优化喷雾干燥工艺制备粉剂,最佳工艺条件为:20%麦芽糊精,进液量:10mL/min,进口温度为120℃,出口温度为65℃;得到的粉剂为紫红色粉末,益生菌含量达到108cfu/g以上,口感酸甜。将发酵后的火龙果籽进行提取,得到的火龙果籽油含有丰富的十六酸、亚油酸和油酸。  相似文献   
56.
Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.  相似文献   
57.
Poly(4-styrenesulfonic acid) (PSSA) doped polypyrrole (PPy)/tungsten oxide (WO3)/reduced graphene oxide (rGO) hybrid nanocomposite have been successfully synthesized using appropriate amounts of PSSA, pyrrole monomer, WO3, and rGO dispersed in aqueous solution through in situ chemical oxidation polymerization. Here, a simple spin coating method was used to fabricate a nitric oxide (NO) gas sensor composed of the aforementioned nanocomposite on a surface acoustic wave (SAW) resonator. This sensor can detect NO gas at concentrations of 1–110 parts per billion (ppb) at room temperature in dry air, with a sensitivity of 12 Hz/ppb and response and recovery times of <2 min. Moreover, its limit of detection (LOD) is 0.31 ppb for a signal to noise ratio of 3. It demonstrates repeatability, fast response, and recovery at room temperature. Moreover, its sensory performance remains highly stable over 30 days with only a 6.3% decrease in sensitivity. In addition, the sensor is highly selective for NO, even when nitrogen dioxide, ammonia, and carbon dioxide are applied as interfering gases. The inclusion of rGO (with large specific surface area) and the synergic effect of n-type WO3 nanoparticles in the p-type PPy matrix (leading to p-n heterojunction region formation) possibly underlie the efficient sensing performance of our sensor.  相似文献   
58.
《Ceramics International》2021,47(19):26598-26619
The growing demands for Li-ion batteries (LIBs) in the electrification revolution, require the development of advanced electrode materials. Recently, intercalating titanium niobium oxide (TNO) anode materials with the general formula of TiNbxO2+2.5x have received lots of attention as an alternative to graphite and Li4Ti5O12 commercial anodes. The desirability of this family of compounds stems from their high theoretical capacities (377–402 mAh/g), high safety, high working voltage, excellent cycling stability, and significant pseudocapacitive behavior. However, the rate performance of TNO-based anodes is poor owing to their low electronic and ionic conductivities. TNO-based composites generally are prepared with two aims of enhancing the conductivity of TNO and achieving a synergic effect between the TNO and the other component of the composite. Compositing with carbon matrices, such as graphene and carbon nanotubes (CNTs) are the most studied strategy for improving the conductivity of TNO and optimizing its high-rate performance. Also, for obtaining anode materials with high capacity and high long-term stability, the composites of TNO with transition metal dichalcogenides (TMDs) materials were proposed in previous literature. In this work, a comprehensive review of the TNO-based composites as the anodes for LIBs is presented which summarizes in detail the main recent literature from their synthesis procedure, optimum synthesis parameters, and the obtained morphology/structure to their electrochemical performance as the LIBs anode. Finally, the research gaps and the future perspective are proposed.  相似文献   
59.
《Ceramics International》2021,47(22):31413-31422
Based on reactive air brazing (RAB), we designed a new type of sealant (Ag–xCuAlO2) for joining 3 mol.% yttria-stabilized zirconia (YSZ) ceramics and AISI 310S stainless steel. The CuAlO2 content affected the wettability of the sealant on the YSZ surface, and the joints had a high shear strength when Ag–2 wt.%CuAlO2, which had a small contact angle on the YSZ substrate, was used as the sealant. In addition, the thickness of the oxide layer was reduced compared to that for the Ag–CuO sealant. The effects of the processing parameters on the microstructure and shear strength of the joints were investigated, and the as-brazed joints reached their highest shear strength (93.7 MPa) when brazed at 1040 °C for 30 min. After high-temperature oxidation at 800 °C for 200 h, the shear strength of the joints remained at 50 MPa, and no apparent change in the microstructure was observed, proving that the joints possessed excellent oxidation resistance.  相似文献   
60.
《Ceramics International》2021,47(22):31485-31496
Mesoporous SmMnO3/CuMnOx catalyst was prepared by a two-step method using flaky CuMnOx with high specific surface and excellent catalytic ability as the carrier, which was further applied to photothermal synergistic degradation of gaseous toluene. Quantitative analysis of O2-TPD and H2-TPR showed that SmMnO3/CuMnOx exhibited abundant of the surface oxygen species and oxygen vacancies content, which enabled it to convert free oxygen to lattice oxygen more quickly during the reaction, and thus improving the reaction process. I-t and photoluminescence experiments demonstrated the improvement of photogenerated electron and hole separation ability of SmMnO3/CuMnOx catalyst. UV–Vis analysis manifested the full spectral range of absorption. XPS analysis verified the unequal positions of valence band of the two materials, which can facilitate the separation of photogenerated electrons from holes and improve the ability of better electron transfer. SmMnO3/CuMnOx catalyst has higher adsorbed oxygen content and light absorption capacity, which is beneficial to the catalytic oxidation. In situ DRIFTs proved that the oxidation reaction on the catalyst followed the Mars-van Krevelen redox cycle. The VOCs test found that SmMnO3/CuMnOx composite catalyst is with lower onset reaction temperature (T90 = 190 °C, T90, corresponding to 90% conversion) and good mineralization (100% at 275 °C).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号